Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
PLoS One ; 18(4): e0284985, 2023.
Article in English | MEDLINE | ID: covidwho-2291496

ABSTRACT

BACKGROUND: The use of motor tricycles in transporting municipal solid waste (MSW) within urban and peri-urban towns in Ghana is on the increase. This activity often leads to the introduction of pathogen-containing bioaerosols into the environment, as well as to the tricycle operators. We sought to investigate the prevalence and associated risk factors of respiratory pathogens among solid waste tricycle operators. METHODS: A cross-sectional study was conducted among 155 solid waste transporters who use motor tricycles using semi-structured interviews. Nasopharyngeal swabs were obtained from participants and screened for respiratory pathogens using Polymerase Chain Reaction (PCR). RESULTS: Pathogens detected in participants were SARS-CoV-2 (n = 10, 6.5%) and Streptococcus pneumoniae (n = 10, 6.5%), constituting an overall prevalence of 12.9% and co-infection rate of 1.3%. The most common self-reported symptoms were cough (n = 67, 43.2%), sore throat (n = 44, 28.4%) and difficulty in breathing (n = 22, 14.2%). Adherence to the use of gloves (n = 117, 75.5%) and nose mask (n = 110, 71.0%) was high. There was a significant association between the detection of respiratory pathogens and the use of gloves, use of more than one PPE and exposure to other pollutants (p < 0.05). Individuals who were exposed to "other pollutants" significantly had lower odds of becoming infected with respiratory pathogens (Adj. OR (95% CI): 0.119(0.015,0.938). CONCLUSION: Although prevalence of respiratory pathogens is generally low, strict adherence to PPE use could further reduce its rates to even lower levels. Governmental health institutions and informal solid waste transporters should address challenges related to exposure to pollutants, use of gloves, and multiple PPE.


Subject(s)
COVID-19 , Solid Waste , Humans , SARS-CoV-2 , Ghana , Cross-Sectional Studies , Self Report
2.
PLoS One ; 17(11): e0277057, 2022.
Article in English | MEDLINE | ID: covidwho-2098771

ABSTRACT

BACKGROUND: The declaration of COVID-19 as a pandemic on March 11 2020, by the World Health Organisation prompted the need for a sustained and a rapid international response. In a swift response, the Government of Ghana, in partnership with Zipline company, launched the use of Unmanned Automated Vehicles (UAV) to transport suspected samples from selected districts to two foremost testing centres in the country. Here, we present the experiences of employing this technology and its impact on the transport time to the second largest testing centre, the Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR) in Kumasi, Ghana. METHODS: Swab samples collected from suspected COVID-19 patients were transported to the Zipline office by health workers. Information on the samples were sent to laboratory personnel located at KCCR through a WhatsApp platform to get them ready to receive the suspected COVID-19 samples while Zipline repackaged samples and transported them via drone. Time of take-off was reported as well as time of drop-off. RESULTS: A total of 2537 COVID-19 suspected samples were received via drone transport from 10 districts between April 2020 to June 2021 in 440 deliveries. Ejura-Sekyedumase District Health Directorate delivered the highest number of samples (765; 30%). The farthest district to use the drone was Pru East, located 270 km away from KCCR in Kumasi and 173 km to the Zipline office in Mampong. Here, significantly, it took on the average 39 minutes for drones to deliver samples compared to 117 minutes spent in transporting samples by road (p<0.001). CONCLUSION: The use of drones for sample transport during the COVID-19 pandemic significantly reduced the travel time taken for samples to be transported by road to the testing site. This has enhanced innovative measures to fight the pandemic using technology.


Subject(s)
COVID-19 , Unmanned Aerial Devices , Humans , Ghana , Pandemics
3.
Nat Commun ; 13(1): 6131, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2077051

ABSTRACT

Real-world data on vaccine-elicited neutralising antibody responses for two-dose AZD1222 in African populations are limited. We assessed baseline SARS-CoV-2 seroprevalence and levels of protective neutralizing antibodies prior to vaccination rollout using binding antibodies analysis coupled with pseudotyped virus neutralisation assays in two cohorts from West Africa: Nigerian healthcare workers (n = 140) and a Ghanaian community cohort (n = 527) pre and post vaccination. We found 44 and 28% of pre-vaccination participants showed IgG anti-N positivity, increasing to 59 and 39% respectively with anti-receptor binding domain (RBD) IgG-specific antibodies. Previous IgG anti-N positivity significantly increased post two-dose neutralizing antibody titres in both populations. Serological evidence of breakthrough infection was observed in 8/49 (16%). Neutralising antibodies were observed to wane in both populations, especially in anti-N negative participants with an observed waning rate of 20% highlighting the need for a combination of additional markers to characterise previous infection. We conclude that AZD1222 is immunogenic in two independent West African cohorts with high background seroprevalence and incidence of breakthrough infection in 2021. Waning titres post second dose indicates the need for booster dosing after AZD1222 in the African setting despite hybrid immunity from previous infection.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Ghana , Humans , Immunoglobulin G , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
4.
The Pan African medical journal ; 42, 2022.
Article in English | EuropePMC | ID: covidwho-2044869

ABSTRACT

Since the global pandemic of the 2019 coronavirus disease (COVID-19), few studies have reported on the relevance of bacteria co-infection on outcome of COVID-19 patients. Little is known about the clinical presentation among pregnant women, mother-to-child transmission, and fetal outcomes. This report shows a 24-year-old nulliparous woman who was 32 weeks pregnant and was admitted to the University Hospital, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi Ghana with symptoms of fever (40.3°C), cough and breathlessness of two weeks duration. Her nasopharyngeal sample tested positive for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and blood culture isolated Burkholderia cepacia. She was given medications but went into pre-term labour and delivered a stillborn baby. This rare case of COVID-19 and Burkholderia cepacia co-infection emphasizes the need for a thorough assessment and appropriate treatment of patients presenting with fever and respiratory symptoms in order to mitigate poor outcome.

5.
Pan Afr Med J ; 42: 173, 2022.
Article in English | MEDLINE | ID: covidwho-1998038

ABSTRACT

Since the global pandemic of the 2019 coronavirus disease (COVID-19), few studies have reported on the relevance of bacteria co-infection on outcome of COVID-19 patients. Little is known about the clinical presentation among pregnant women, mother-to-child transmission, and fetal outcomes. This report shows a 24-year-old nulliparous woman who was 32 weeks pregnant and was admitted to the University Hospital, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi Ghana with symptoms of fever (40.3°C), cough and breathlessness of two weeks duration. Her nasopharyngeal sample tested positive for Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and blood culture isolated Burkholderia cepacia. She was given medications but went into pre-term labour and delivered a stillborn baby. This rare case of COVID-19 and Burkholderia cepacia co-infection emphasizes the need for a thorough assessment and appropriate treatment of patients presenting with fever and respiratory symptoms in order to mitigate poor outcome.


Subject(s)
Burkholderia cepacia , COVID-19 , Coinfection , Pregnancy Complications, Infectious , Adult , COVID-19/complications , COVID-19/diagnosis , Coinfection/diagnosis , Female , Fetal Death , Fever/etiology , Humans , Infectious Disease Transmission, Vertical , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Outcome , SARS-CoV-2 , Young Adult
6.
COVID ; 2(7):858-866, 2022.
Article in English | MDPI | ID: covidwho-1911225

ABSTRACT

The accurate detection of SARS-CoV-2 through respiratory sampling is critical for the prevention of further transmission and timely initiation of treatment. There is a diverse range of SARS-CoV-2 detection rates in reported studies, with uncertainty regarding the optimal sampling method for COVID-19 diagnosis and monitoring. Oropharyngeal sampling (OPS) is one of the most commonly used methods of respiratory sampling in Ghana and other parts of the world for the detection of SARS-CoV-2 viral RNA. However, this sampling technique has a number of drawbacks, which include difficulty in obtaining high-quality swab samples, increased risk of infection to healthcare workers, and increased cost from a regular supply of swabs, transport media, and personal protective equipment (PPE). This study, therefore, sought to evaluate the diagnostic performance of sputum specimens in the diagnosis of COVID-19. This was a cross-sectional analytical study conducted in two health facilities in Kumasi, Ghana, between April and September 2021. Paired samples (an oropharyngeal swab and sputum) were taken from each recruited patient and run concurrently for the detection of SARS-CoV-2 genes (the N and ORF1ab genes) using RT-qPCR. Of the 317 patients recruited, 50.8% were males, and 60.4% were young adults aged 20–39 years. A significant proportion (65.9%) of the patients did not have any co-morbidity, and the majority were with symptoms;predominantly cough (36.3%), headache (31.5%), general weakness (24.0%), fever (20.2%), and sore throat (16.1%). Being symptomatic (p = 0.003), having comorbidity (p = 0.001), and the reporting facility (p = 0.010) were significantly associated with the COVID-19 status. The sputum samples yielded more COVID-positive, 120/317 (37.9%), as compared to OPS, 83/317 (26.2%). The sputum samples were 85.5% (95% CI, 76.4–91.5) sensitive, 79.1% (95% CI, 73.4–83.7) specific, and with positive and negative predictive values of 59.2% and 93.9%, respectively, when compared with OPS. The overall median of the SARS-CoV-2 viral loads for sputum (3.70 ×103 copies/mL) were significantly higher than in OPS (1.18 ×102 copies/mL) (p = 0.003). Findings from the study suggest self-collected sputum as a useful alternative to OPS for the diagnosis of COVID-19, providing a comparable diagnostic performance and, thereby, easing the uncomfortable process and mitigating risk of aerosol transmission to healthcare workers.

7.
Nat Commun ; 13(1): 2494, 2022 05 06.
Article in English | MEDLINE | ID: covidwho-1890179

ABSTRACT

The COVID-19 pandemic is one of the fastest evolving pandemics in recent history. As such, the SARS-CoV-2 viral evolution needs to be continuously tracked. This study sequenced 1123 SARS-CoV-2 genomes from patient isolates (121 from arriving travellers and 1002 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana. The data show that initial local transmission was dominated by B.1.1 lineage, but the second wave was overwhelmingly driven by the Alpha variant. Subsequently, an unheralded variant under monitoring, B.1.1.318, dominated transmission from April to June 2021 before being displaced by Delta variants, which were introduced into community transmission in May 2021. Mutational analysis indicated that variants that took hold in Ghana harboured transmission enhancing and immune escape spike substitutions. The observed rapid viral evolution demonstrates the potential for emergence of novel variants with greater mutational fitness as observed in other parts of the world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral/genetics , Ghana/epidemiology , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Social Science Open Access Repository; 2021.
Non-conventional in English | Social Science Open Access Repository | ID: grc-747844

ABSTRACT

This study seeks to determine an appropriate statistical technique for forecasting the cumulated confirm cases of Coronavirus in Ghana. Cumulated daily data spanning from March 12, 2020, to August 04, 2020, was retrieved from the Center for Systems Science and Engineering at Johns Hopkins University. Four statistical forecasting techniques: Autoregressive Integrated Moving Average, Artificial Neural Network, Exponential smoothing and Autoregressive Fractional Integrated Moving Average were fitted to the COVID-19 series. Their respective forecast accuracy measures were compared to select the appropriate technique for forecasting the COVID-19 cases. Our findings revealed that the ARFIMA technique was a suitable statistical model for predicting COVID-19 cases in Ghana. The "best" model for forecasting is ARFIMA (2, 0.49, 4) which passed all the needed diagnostic tests. An unequal weight was estimated to derive a combined model for all four forecasting techniques. A 149-cumulated daily forecast from the "best" model and the combined model revealed that the number of confirmed COVID-19 cases would increase slightly until the end of this year.

9.
Ghana Med J ; 54(4 Suppl): 71-76, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1436197

ABSTRACT

Across the globe, the outbreak of the COVID-19 pandemic is causing distress with governments doing everything in their power to contain the spread of the novel coronavirus (SARS-CoV-2) to prevent morbidity and mortality. Actions are being implemented to keep health care systems from being overstretched and to curb the outbreak. Any policy responses aimed at slowing down the spread of the virus and mitigating its immediate effects on health care systems require a firm basis of information about the absolute number of currently infected people, growth rates, and locations/hotspots of infections. The only way to obtain this base of information is by conducting numerous tests in a targeted way. Currently, in Ghana, there is a centralized testing approach, that takes 4-5 days for samples to be shipped and tested at central reference laboratories with results communicated to the district, regional and national stakeholders. This delay in diagnosis increases the risk of ongoing transmission in communities and vulnerable institutions. We have validated, evaluated and deployed an innovative diagnostic tool on a mobile laboratory platform to accelerate the COVID-19 testing. A preliminary result of 74 samples from COVID-19 suspected cases has a positivity rate of 12% with a turn-around time of fewer than 3 hours from sample taking to reporting of results, significantly reducing the waiting time from days to hours, enabling expedient response by the health system for contact tracing to reduce transmission and additionally improving case management. FUNDING: Test kits were provided by AngloGold Ashanti Obuasi Mine (AngloGold Ashanti Health Foundation). The American Leprosy Mission donated the PCR machine, and the mobile laboratory van was funded by the Embassy of the Kingdom of the Netherlands (EKN). AAS, YAA was supported by (PANDORA-ID-NET RIA2016E-1609) and ROP supported by EDCTP Senior Fellowship (TMA2016SF), both funded by the European and Developing Countries Clinical Trials Partnership (EDCTP2) programme which is supported under Horizon 2020, the European Union.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Mobile Health Units , Population Surveillance , SARS-CoV-2/isolation & purification , Adolescent , Adult , Contact Tracing , Disease Transmission, Infectious/prevention & control , Early Diagnosis , Female , Humans , Infection Control/methods , Male , Middle Aged , SARS-CoV-2/genetics , Time Factors , Young Adult
10.
Ghana Med J ; 54(4 Suppl): 39-45, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1436193

ABSTRACT

BACKGROUND: In high-income countries, mortality related to hospitalized patients with the Coronavirus disease 2019 (COVID-19) is approximately 4-5%. However, data on COVID-19 admissions from sub-Saharan Africa are scanty. OBJECTIVE: To describe the clinical profile and determinants of outcomes of patients with confirmed COVID-19 admitted at a hospital in Ghana. METHODS: A prospective study involving 25 patients with real time polymerase chain reaction confirmed COVID-19 admitted to the treatment centre of the University Hospital, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana from 1st June to 27th July, 2020. They were managed and followed up for outcomes. Data were analysed descriptively, and predictors of mortality assessed using a multivariate logistic regression modelling. RESULTS: The mean age of the patients was 59.3 ± 20.6 years, and 14 (56%) were males. The main symptoms at presentation were breathlessness (68%) followed by fever (56%). The cases were categorized as mild (6), moderate (6), severe (10) and critical (3). Hypertension was the commonest comorbidity present in 72% of patients. Medications used in patient management included dexamethasone (68%), azithromycin (96%), and hydroxychloroquine (4%). Five of 25 cases died (Case fatality ratio 20%). Increasing age and high systolic blood pressure were associated with mortality. CONCLUSION: Case fatality in this sample of hospitalized COVID-19 patients was high. Thorough clinical assessment, severity stratification, aggressive management of underlying co-morbidities and standardized protocols incountry might improve outcomes. FUNDING: None declared.


Subject(s)
COVID-19 Drug Treatment , COVID-19/mortality , Hospitalization/statistics & numerical data , SARS-CoV-2 , Adult , Age Factors , Aged , Blood Pressure , COVID-19/virology , Comorbidity , Dyspnea/mortality , Dyspnea/virology , Female , Fever/mortality , Fever/virology , Ghana/epidemiology , Humans , Hypertension/mortality , Logistic Models , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Tertiary Care Centers
11.
PLoS One ; 16(9): e0257450, 2021.
Article in English | MEDLINE | ID: covidwho-1416901

ABSTRACT

INTRODUCTION: Coronavirus disease-19 (COVID-19), which started in late December, 2019, has spread to affect 216 countries and territories around the world. Globally, the number of cases of SARS-CoV-2 infection has been growing exponentially. There is pressure on countries to flatten the curves and break transmission. Most countries are practicing partial or total lockdown, vaccination, massive education on hygiene, social distancing, isolation of cases, quarantine of exposed and various screening approaches such as temperature and symptom-based screening to break the transmission. Some studies outside Africa have found the screening for fever using non-contact thermometers to lack good sensitivity for detecting SARS-CoV-2 infection. The aim of this study was to determine the usefulness of clinical symptoms in accurately predicting a final diagnosis of COVID-19 disease in the Ghanaian setting. METHOD: The study analysed screening and test data of COVID-19 suspected, probable and contacts for the months of March to August 2020. A total of 1,986 participants presenting to Tamale Teaching hospital were included in the study. Logistic regression and receiver operator characteristics (ROC) analysis were carried out. RESULTS: Overall SARS-CoV-2 positivity rate was 16.8%. Those with symptoms had significantly higher positivity rate (21.6%) compared with asymptomatic (17.0%) [chi-squared 15.5, p-value, <0.001]. Patients that were positive for SARS-CoV-2 were 5.9 [3.9-8.8] times more likely to have loss of sense of smell and 5.9 [3.8-9.3] times more likely to having loss of sense of taste. Using history of fever as a screening tool correctly picked up only 14.8% of all true positives of SARS-CoV-2 infection and failed to pick up 86.2% of positive cases. Using cough alone would detect 22.4% and miss 87.6%. Non-contact thermometer used alone, as a screening tool for COVID-19 at a cut-off of 37.8 would only pick 4.8% of positive SARS-CoV-2 infected patients. CONCLUSION: The use of fever alone or other symptoms individually [or in combination] as a screening tool for SARS-CoV-2 infection is not worthwhile based on ROC analysis. Use of temperature check as a COVID-19 screening tool to allow people into public space irrespective of the temperature cut-off is of little benefit in diagnosing infected persons. We recommend the use of facemask, hand hygiene, social distancing as effective means of preventing infection.


Subject(s)
Body Temperature , COVID-19 , Mass Screening/methods , Pandemics/prevention & control , Adolescent , Adult , COVID-19/diagnosis , COVID-19/prevention & control , Child , Child, Preschool , Female , Ghana/epidemiology , Hand Hygiene , Humans , Infant , Infant, Newborn , Male , Masks , Middle Aged , Physical Distancing , Young Adult
13.
Pan Afr Med J ; 38: 244, 2021.
Article in English | MEDLINE | ID: covidwho-1257121

ABSTRACT

INTRODUCTION: acute respiratory tract infections (ARIs) are responsible for significant proportions of illnesses and deaths annually. Most of ARIs are of viral etiology, with human coronaviruses (HCoVs) playing a key role. This study was conducted prior to the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to provide evidence about the sero-epidemiology of HCoVs in rural areas of Ghana. METHODS: this was a cross-sectional study conducted as part of a large epidemiological study investigating the occurrence of respiratory viruses in 3 rural areas of Ghana; Buoyem, Kwamang and Forikrom. Serum samples were collected and tested for the presence of IgG-antibodies to three HCoVs; HCoV-229E, HCoV-OC43 and HCoV-NL63 using immunofluorescence assay. RESULTS: of 201 subjects enrolled into the study, 97 (48.3%) were positive for all three viruses. The most prevalent virus was HCoV-229E (23%; 95% CI: 17.2 - 29.3), followed by HCoV-OC43 (17%; 95% CI: 12.4 - 23.4), then HCoV-NL63 (8%, 95% CI: 4.6 - 12.6). Subjects in Kwamang had the highest sero-prevalence for HCoV-NL63 (68.8%). human coronaviruses-229E (41.3%) and HCoV-OC43 (45.7%) were much higher in Forikrom compared to the other study areas. There was however no statistical difference between place of origin and HCoVs positivity. Although blood group O+ and B+ were most common among the recruited subjects, there was no significant association (p = 0.163) between blood group and HCoV infection. CONCLUSION: this study reports a 48.3% sero-prevalence of HCoVs (OC43, NL63 and 229E) among rural communities in Ghana. The findings provide useful baseline data that could inform further sero-epidemiological studies on SARS-CoV-2 in Africa.


Subject(s)
Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Adult , Coronavirus Infections/virology , Cross-Sectional Studies , Female , Ghana/epidemiology , Humans , Immunoglobulin G/blood , Male , Middle Aged , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Rural Population/statistics & numerical data , Seroepidemiologic Studies , Young Adult
14.
PLoS Negl Trop Dis ; 15(4): e0009335, 2021 04.
Article in English | MEDLINE | ID: covidwho-1201598

ABSTRACT

Since late 2019, the coronavirus disease 2019 (COVID-19) outbreak, caused by SARS-CoV-2, has rapidly evolved to become a global pandemic. Each country was affected but with a varying number of infected cases and mortality rates. Africa was hit late by the pandemic but the number of cases rose sharply. In this study, we investigated 224 SARS-CoV-2 genome sequences from the Global Initiative on Sharing Avian Influenza Data (GISAID) in the early part of the outbreak, of which 69 were from Africa. We analyzed a total of 550 mutations by comparing them with the reference SARS-CoV-2 sequence from Wuhan. We classified the mutations observed based on country and region, and afterwards analyzed common and unique mutations on the African continent as a whole. Correlation analyses showed that the duo variants ORF1ab/RdRp 4715L and S protein 614G variants, which are strongly linked to fatality rate, were not significantly and positively correlated with fatality rates (r = -0.03757, P = 0.5331 and r = -0.2876, P = 0.6389, respectively), although increased number of cases correlated with number of deaths (r = 0.997, P = 0.0002). Furthermore, most cases in Africa were mainly imported from American and European countries, except one isolate with no mutation and was similar to the original isolate from Wuhan. Moreover, unique mutations specific to countries were identified in the early phase of the outbreak but these mutations were not regional-specific. There were common mutations in all isolates across the continent as well as similar isolate-specific mutations in different regions. Our findings suggest that mutation is rapid in SARS-CoV-2 in Africa and although these mutations spread across the continent, the duo variants could not possibly be the sole cause of COVID-19 deaths in Africa in the early phase of the outbreak.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Africa/epidemiology , COVID-19/epidemiology , Disease Outbreaks , Europe/epidemiology , Genome, Viral , Genomics , Humans , Mutation , Pandemics , Phylogeny , Polyproteins , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics
15.
PLoS One ; 16(4): e0249069, 2021.
Article in English | MEDLINE | ID: covidwho-1181194

ABSTRACT

BACKGROUND: The novel coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), continues to remain a global challenge. There is emerging evidence of SARS-CoV-2 virus found in the blood of patients from China and some developed countries. However, there is inadequate data reported in Ghana and other parts of Africa, where blood transfusion service heavily relies on voluntary and replacement blood donors. This study aimed to investigate whether plasma of infected individuals could pose significant transfusion transmitted risk of COVID-19 in Ghanaian populations. METHODS: This cross-sectional retrospective study was conducted at the Kumasi Centre for Collaborative Research into Tropical Medicine (KCCR), KNUST, Ghana. Study subjects comprised contacts of COVID-19 individuals, those with classical symptoms of COVID-19 and individuals who had recovered based on the new Ghana discharge criteria. Whole blood, sputum or deep coughed saliva samples were collected and transported to KCCR for SARS-CoV-2 testing. Viral nucleic acid was extracted from sputum/nasopharyngeal samples using Da An Gene column based kit and from plasma using LBP nucleic acid extraction kit. Real-Time PCR was performed specifically targeting the ORF1ab and Nucleocapsid (N) genomic regions of the virus. RESULTS: A total of 97 individuals were recruited into the study, with more than half being males (58; 59.7%). The mean age of all subjects was 33 years (SD = 7.7) with minimum being 22 years and maximum 56 years. Majority (76; 78.4%) of all the subjects were asymptomatic, and among the few symptomatic subjects, cough (10; 10.3%) was the most predominant symptom. Of the 97 sputum samples tested, 79 (81.4%) were positive for SARS-CoV-2. We identified SARS-CoV-2 viral RNA in the plasma of 1 (1.03%) subject who had clinically recovered. CONCLUSION: This study reports the identification of SARS-CoV-2 viral RNA in a convalescent individual in Ghana. Due to the low prevalence observed and the marginal cycling thresholds associated, the risk of transfusion transmission of SARS-CoV-2 is negligible. Well-powered studies and advanced diagnostics to determine infectious viremia is recommended to further evaluate the potential risk of hematogenous transmission among recovered patients.


Subject(s)
Blood Transfusion , COVID-19/pathology , Adult , COVID-19/transmission , COVID-19/virology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , RNA, Viral/blood , Real-Time Polymerase Chain Reaction , Retrospective Studies , Risk , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sputum/virology , Young Adult
16.
Arch Virol ; 166(5): 1385-1393, 2021 May.
Article in English | MEDLINE | ID: covidwho-1135167

ABSTRACT

Following the detection of the first imported case of COVID-19 in the northern sector of Ghana, we molecularly characterized and phylogenetically analysed sequences, including three complete genome sequences, of severe acute respiratory syndrome coronavirus 2 obtained from nine patients in Ghana. We performed high-throughput sequencing on nine samples that were found to have a high concentration of viral RNA. We also assessed the potential impact that long-distance transport of samples to testing centres may have on sequencing results. Here, two samples that were similar in terms of viral RNA concentration but were transported from sites that are over 400 km apart were analyzed. All sequences were compared to previous sequences from Ghana and representative sequences from regions where our patients had previously travelled. Three complete genome sequences and another nearly complete genome sequence with 95.6% coverage were obtained. Sequences with coverage in excess of 80% were found to belong to three lineages, namely A, B.1 and B.2. Our sequences clustered in two different clades, with the majority falling within a clade composed of sequences from sub-Saharan Africa. Less RNA fragmentation was seen in sample KATH23, which was collected 9 km from the testing site, than in sample TTH6, which was collected and transported over a distance of 400 km to the testing site. The clustering of several sequences from sub-Saharan Africa suggests regional circulation of the viruses in the subregion. Importantly, there may be a need to decentralize testing sites and build more capacity across Africa to boost the sequencing output of the subregion.


Subject(s)
COVID-19/transmission , SARS-CoV-2/classification , Whole Genome Sequencing/methods , Female , Genome, Viral , Ghana , Humans , Male , Nasopharynx/virology , Oropharynx/virology , Phylogeny , SARS-CoV-2/genetics , Sequence Analysis, RNA
17.
PLoS One ; 15(12): e0243711, 2020.
Article in English | MEDLINE | ID: covidwho-968555

ABSTRACT

BACKGROUND: Global cases of COVID-19 continue to rise, causing havoc to several economies. So far, Ghana has recorded 48,643 confirmed cases with 320 associated deaths. Although summaries of data are usually provided by the Ministry of Health, detailed epidemiological profile of cases are limited. This study sought to describe the socio-demographic features, pattern of COVID-19 spread and the viral load dynamics among subjects residing in northern, middle and part of the southern belt of Ghana. METHODS: This was a cross-sectional retrospective study that reviewed records of samples collected from February to July, 2020. Respiratory specimens such as sputum, deep-cough saliva and nasopharyngeal swabs were collected from suspected COVID-19 subjects in 12 regions of Ghana for laboratory analysis and confirmation by real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: A total of 72,434 samples were collected during the review period, with majority of the sampled individuals being females (37,464; 51.9%). The prevalence of SARS-CoV-2 identified in the study population was 13.2% [95%CI: 12.9, 13.4). Males were mostly infected (4,897; 51.5%) compared to females. Individuals between the ages 21-30 years recorded the highest number of infections (3,144, 33.4%). Symptomatic subjects had higher viral loads (1479.7 copies/µl; IQR = 40.6-178919) than asymptomatic subjects (49.9; IQR = 5.5-3641.6). There was significant association between gender or age and infection with SARS-CoV-2 (p<0.05). Among all the suspected clinical presentations, anosmia was the strongest predictor of SARS-CoV-2 infection (Adj. OR (95%CI): 24.39 (20.18, 29.49). We observed an average reproductive number of 1.36 with a minimum of 1.28 and maximum of 1.43. The virus trajectory shows a gradual reduction of the virus reproductive number. CONCLUSION: This study has described the epidemiological profile of COVID-19 cases in northern, middle and part of the southern belt of Ghana, with males and younger individuals at greater risk of contracting the disease. Health professionals should be conscious of individuals presenting with anosmia since this was seen as the strongest predictor of virus infection.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Child , Cross-Sectional Studies , Female , Ghana/epidemiology , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Young Adult
18.
BMC Vet Res ; 16(1): 405, 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-895005

ABSTRACT

BACKGROUND: Apart from the huge worldwide economic losses often occasioned by bovine coronavirus (BCoV) to the livestock industry, particularly with respect to cattle rearing, continuous surveillance of the virus in cattle and small ruminants is essential in monitoring variations in the virus that could enhance host switching. In this study, we collected rectal swabs from a total of 1,498 cattle, sheep and goats. BCoV detection was based on reverse transcriptase polymerase chain reaction. Sanger sequencing of the partial RNA-dependent RNA polymerase (RdRp) region for postive samples were done and nucleotide sequences were compared with homologous sequences from the GenBank. RESULTS: The study reports a BCoV prevalence of 0.3%, consisting of 4 positive cases; 3 goats and 1 cattle. Less than 10% of all the animals sampled showed clinical signs such as diarrhea and respiratory distress except for high temperature which occurred in > 1000 of the animals. However, none of the 4 BCoV positive animals manifested any clinical signs of the infection at the time of sample collection. Bayesian majority-rule cladogram comparing partial and full length BCoV RdRp genes obtained in the study to data from the GenBank revealed that the sequences obtained from this study formed one large monophyletic group with those from different species and countries. The goat sequences were similar to each other and clustered within the same clade. No major variations were thus observed between our isolates and those from elsewhere. CONCLUSIONS: Given that Ghana predominantly practices the extensive and semi-intensive systems of animal rearing, our study highlights the potential for spillover of BCoV to small ruminants in settings with mixed husbandry and limited separation between species.


Subject(s)
Cattle Diseases/virology , Coronavirus Infections/veterinary , Coronavirus, Bovine/isolation & purification , Goat Diseases/virology , Sheep Diseases/virology , Animals , Base Sequence , Bayes Theorem , Cattle , Cattle Diseases/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Bovine/genetics , Diarrhea/veterinary , Ghana/epidemiology , Goat Diseases/epidemiology , Goats , Phylogeny , Prevalence , RNA-Dependent RNA Polymerase/genetics , Respiratory Distress Syndrome/veterinary , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sheep , Sheep Diseases/epidemiology
19.
Vet Microbiol ; 241: 108544, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-823170

ABSTRACT

Cattle, goats and sheep are dominant livestock species in sub-Saharan Africa, with sometimes limited information on the prevalence of major infectious diseases. Restrictions due to notifiable epizootics complicate the exchange of samples in surveillance studies and suggest that laboratory capacities should be established domestically. Bovine Coronavirus (BCoV) causes mainly enteric disease in cattle. Spillover to small ruminants is possible. Here we established BCoV serology based on a recombinant immunofluorescence assay for cattle, goats and sheep, and studied the seroprevalence of BCoV in these species in four different locations in the Greater Accra, Volta, Upper East, and Northern provinces of Ghana. The whole sampling and testing was organized and conducted by a veterinary school in Kumasi, Ashanti Region of Ghana. Among sampled sheep (n = 102), goats (n = 66), and cattle (n = 1495), the seroprevalence rates were 25.8 %, 43.1 % and 55.8 %. For cattle, seroprevalence was significantly higher on larger farms (82.2 % vs 17.8 %, comparing farms with >50 or <50 animals; p = 0.027). Highest prevalence was seen in the Northern province with dry climate, but no significant trend following the north-south gradient of sampling sites was detected. Our study identifies a considerable seroprevalence for BCoV in Ghana and provides further support for the spillover of BCoV to small ruminants in settings with mixed husbandry and limited separation between species.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/immunology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology , Age Distribution , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/transmission , Cattle Diseases/virology , Cluster Analysis , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Cross-Sectional Studies , Female , Ghana/epidemiology , Goat Diseases/immunology , Goat Diseases/transmission , Goat Diseases/virology , Goats , Lactation , Male , Multivariate Analysis , Risk Factors , Seroepidemiologic Studies , Sex Distribution , Sheep , Sheep Diseases/immunology , Sheep Diseases/transmission , Sheep Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL